Integrin-Linked Kinase links Dynactin-1/Dynactin-2 with cortical Integrin receptors to orient the mitotic spindle relative to the substratum

نویسندگان

  • Edward James Morris
  • Kiran Assi
  • Baljinder Salh
  • Shoukat Dedhar
چکیده

Cells must divide strictly along a plane to form an epithelial layer parallel to the basal lamina. The axis of cell division is primarily governed by the orientation of the mitotic spindle and spindle misorientation pathways have been implicated in cancer initiation. While β1-Integrin and the Dynein/Dynactin complex are known to be involved, the pathways linking these complexes in positioning mitotic spindles relative to the basal cortex and extracellular matrix remain to be elucidated. Here, we show that Integrin-Linked Kinase (ILK) and α-Parvin regulate mitotic spindle orientation by linking Dynactin-1 and Dynactin-2 subunits of the Dynein/Dynactin complex to Integrin receptors at the basal cortex of mitotic cells. ILK and α-Parvin are required for spindle orientation. ILK interacts with Dynactin-1 and Dynactin-2 and ILK siRNA attenuates Dynactin-2 localization to the basal cortex. Furthermore we show that Dynactin-2 can no longer colocalize or interact with Integrins when ILK is absent, suggesting mechanistically that ILK is acting as a linking protein. Finally we demonstrate that spindle orientation and cell proliferation are disrupted in intestinal epithelial cells in vivo using tissue-specific ILK knockout mice. These data demonstrate that ILK is a linker between Integrin receptors and the Dynactin complex to regulate mitotic spindle orientation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells

The mitotic spindle is often positioned in a characteristic location during development, for example to enable the proper segregation of developmental determinants [1,2]. When epithelial cells divide, the mitotic spindle is often positioned parallel to the plane of the epithelium, so that both daughter cells contribute to the epithelium [3]. The mechanisms by which mitotic spindles are position...

متن کامل

p21-activated kinase 4 regulates mitotic spindle positioning and orientation

During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will sp...

متن کامل

The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos

BACKGROUND During metazoan development, cell diversity arises primarily from asymmetric cell divisions which are executed in two phases: segregation of cytoplasmic factors and positioning of the mitotic spindle - and hence the cleavage plane -relative to the axis of segregation. When polarized cells divide, spindle alignment probably occurs through the capture and subsequent shortening of astra...

متن کامل

NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures

Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. I...

متن کامل

The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells

Accurate mitotic spindle positioning is essential for the regulation of cell fate choices, cell size and cell position within tissues. The most prominent model of spindle positioning involves a cortical pulling mechanism, where the minus end-directed microtubule motor protein dynein is attached to the cell cortex and exerts pulling forces on the plus ends of astral microtubules that reach the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015